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Influence of wave dispersion on vortex pairing in a jet 
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The geometry of large-scale structures in the turbulent mixing layer of a moderate 
Reynolds number jet is deduced from measurements of the fluctuating pressure in the 
hydrodynamic near field. The structures are rings of concentrated vorticity that 
distort with downstream distance until statistical axisymmetry disappears. The rings 
are spaced quasi-periodically and coalesce with each other, producing larger spacings. 
Statistical and flow-visualization techniques are applied to free and forced jets over 
a range of Reynolds numbers from 5000 to 50000 to demonstrate that rings of a 
given spacing do not coalesce with each other until they are far enough downstream 
that the local mixing layer has attained some critical thickness which scales with the 
wavelength of the vortex pair. Wave dispersion is evaluated a5 a plausible mechanism 
for localizing the coalescences. The central feature of the model is the observation 
that a shear layer is dispersive to wavelengths much longer than its thickness and 
non-dispersive to shorter waves. 

1. Introduction 
The notion that there is large-scale motion present in free shear layers is not new. 

The occurrence of spatially unstable waves in laminar shear flows was recognized in 
the last century. It has been known for a t  least twenty years that these waves roll 
up to produce cores of concentrated vorticity which eventually coalesce with each 
other to produce subharmonics. Anderson (1  955) used flow visualization to observe 
pairings between vortex rings in a jet and Domm (1956) suggested vortex coalescence 
as the mechanism responsible for the production of subharmonics in two-dimensional 
mixing layers. Although these essentially periodic structures were considered to be 
low Reynolds number phenomena, Townsend (1956) at around this time anticipated 
the existence of large-scale motion within fully developed turbulent shear flows when 
he developed his eddy model. 

The novel point of view that has emerged recently, chiefly from the flow-visualiza- 
tion experiments of Brown & Roshko (1971, 1974) and Winant & Browand (1974), is 
that  the large-scale structures are themselves the mixing layers. From this perspective, 
shear-layer transition is related to the onset of nonlinearities in the large-scale motions. 
Coalescences between neighbouring concentrations of vorticity are primarily re- 
sponsible for the linear spreading associated with turbulent shear layers. The three- 
dimensional mixing, which is the other property associated with turbulence, is, 
according to this view, either the result of the large momentum fluxes known to be 

t Present address : Dynamics Technology, Inc., 3838 Carson Street, Torrance, California 
90803. 



470 R. A .  Petersen 

associated with coalescences (Browand & Weidman 1976) or is caused by secondary 
instabilities intrinsic to the structures as suggested by Konrsld, Roshko & Brown 
(1976). 

If this concept is accurate, it is relevant to examine what factors influence the 
three-dimensional shape of the turbulent structures and to what extent their spacing 
and coalescence depend on local us. initial conditions. This paper is motivated by 
these two questions and is confined to  the cylindrical mixing layers of incompressible 
circular jets. 

According to the model suggested by Laufer (1974), the organized structures in a 
turbulent jet are successive rings of concentrated vorticity. The arrangement is un- 
stable to  perturbations in the spacing between rings. The instability is axisymmetric 
and results in ‘pairings’ between adjacent rings. One can put foward purely kinematic 
arguments similar to those of Winant & Browand (1974) to show that the pairings 
are a sufficient mechanism for linear spreading. According to this model, the spacing 
between rings would increase exponentially with downstream distance. However, it  
is not clear whether the pairings are localized by the shear-layer dynamics or whether 
they are a purely kinematic process dependent only on initial conditions. The experi- 
mental evidence is inconclusive. Forcing experiments (Crow & Champagne 1971 ; 
Browand, Chu & Laufer 1975) indicate that initial conditions can affect global pro- 
perties of the jet. On the other hand, free jet scaling suggests local dependence along 
the jet for coalescences between structures of a given spacing. For example, Laufer 
(1974) demonstrated that the local mean spacing between structures in a free jet 
scales with downstream distance over a wide range of exit Reynolds numbers. Since 
parallel stability theories (Michalke 1971; Mattingly & Chang 1974) show that the 
wavelength of the initial instability is determined by the initial shear-layer thickness, 
which depends on the exit Reynolds number, we must conclude that in a free jet 
the influence of the initial conditions has disappeared after the first few pairings. A 
plausible dynamic mechanism for local influence over coalescences is wave disper- 
sion. The spatial stability analysis of Michalke (1971) indicates that a shear layer of 
a given thickness is dispersive to  long waves and relatively non-dispersive to short 
waves. Generally speaking, the longest non-dispersive wave scales with the shear 
layer and has a theoretical wavelength of about eight shear-layer thicknesses (since 
d / U ,  = 0.1 and cph/q  = 0.6 from Michalke’s figure 7, and since S/O is generally 
considered to be about 5).  The vortex spacing Z(x) typically measured in turbulent 
jets (Laufer 1974) is Z(Z)/D = 0 * 5 5 ~ / D  

and the slope thickness is typically S(x) /D = 0.15z/D. Consequently, the vortices 
are spaced about 3-5 shear-layer thicknesses apart, which makes the wavelength of 
the longest non-dispersive wave about twice the vortex spacing. Now, the large- 
scale vortex structures themselves are nonlinear, but the spatial perturbation that 
is necessary to  initiate a pairing can be viewed as the superposition of a small ampli- 
tude subharmonic wave. It will be shown that the theoretical phase speed of the linear 
subharmonic is equal to the measured convection speed of the nonlinear vortex pair 
when coalescence occurs. By analogy with resonant interactions between long and 
short waves, we are suggesting that the small amplitude subharmonic needs to maintain 
a constant phase relative to the vortex pair in order for the coalescence to proceed. This 
model is consistent with the numerical observations of Patnaik, Sherman & Corcos 
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(1  976). They simulated two-dimensional vortex coalescence in a non-dispersive mixing 
layer by allowing a vortex pair to interact with a subharmonic wave. They found that 
there are certain phase differences between the vortex pair and the subharmonic 
which effectively inhibit the coalescence. 

Intrinsic to  the physics of vortex coalescences in a jet is the question of the three- 
dimensional shape of the structures themselves. At very low exit Reynolds numbers 
(e.g. U, D/u  = 5000, where C< = exit velocity and D = nozzle diameter) the structures 
are observed to  be axisymmetric. However at higher Reynolds numbers there is 
strong experimental evidence suggesting that the structures become intermittently 
or predominantly helical. For example, in their flow-visualization studies, Browand 
& Laufer ( 1975) reported intermittent helical modes at  Reynolds numbers greater than 
15000. Similarly, modal-decomposition measurements by Fuchs (1974) at  a much 
higher Reynolds number (400 000) support the existence of higher-order azimuthal 
modes. The prevalence of helical concentrations of vorticity a t  high Reynolds numbers 
is disturbing for a couple of reasons. First, coalescences between helices would be 
more complicated geometrically, and would probably require a more complicated 
model. For example, Browand & Laufer (1975) suggested that such coalescences 
produce fractional subharmonics. Second, helical vortices introduce axial components 
of vorticity. Since there is no torque on the jet, there can be no vorticity normal to a 
convected fluid surface initiating from the nozzle exit plane. As the cylindrical vortex 
sheet rolls up to form a helical core, the fluid surface will have to  strain in order to 
remain parallel with the core. The topology is difficult to  visualize for an open struc- 
ture like a helix. Since the existence of higher-order azimuthal modes raises such 
fundamental difficulties, experimental evidence is presented that suggests an alter- 
native interpretation of previous observations, namely that mixing-layer structures 
remain ring-like a t  high Reynolds number, but that  random straining gives the 
appearance of helices both visually and statistically. 

The experimental apparatus and instrumentation are described in $ 2. The three- 
dimensional shape of the large-scale structures is explored experimentally a t  moderate 
Reynolds number in $3,  and in 5 4 evidence is presented in support of the resonance 
model for vortex coalescence. 

2. Apparatus 
Two different jets were used for complementary parts of the study. A low speed 

air jet was used to  deduce the geometry of the structures, while a water jet was con- 
venient to study the effect of dispersion on vortex coalescence. Between them, the 
two sets of experiments encompassed a Reynolds number range of 5000-50000. 

The air jet consisted of a stagnation chamber and a 2.54 em diameter nozzle with 
a contraction ratio of 36: 1 .  It was powered by a pump that permitted operating 
speeds of up to  60 m/s. The measurements reported here were performed a t  an exit 
velocity of 30 m/s, which corresponds to a Reynolds number of 52000 based on the 
exit diameter and velocity. The free shear layer was initially laminar a t  this speed, 
and the exit-plane turbulence level was measured a t  0.003 U, using a constant- 
temperature hot-wire anemometer. Most of the air-jet measurements were made in 
the hydrodynamic near field with in. diameter condenser microphones. The micro- 
phones were always positioned on a ray emanating from the edge of the nozzle which 
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FIGURE 1. Water-jet facility. 

made an angle of 10" with the jet axis. The planes of their diaphragms were parallel 
to the jet axis. When it was necessary to process the signals digitally, the analog 
records were sampled and digitized using a mini-computer subsystem of our owndesign. 

The water-jet facility is shown schematically in figure 1. It was a closed system 
based on a centrifugal pump capable of providing 2.1 11s against a head of 9.1 m of 
water. Throttling was provided by a gate valve. The stagnation chamber consisted 
of a conical inlet diffuser, a honeycomb flow straightener and a 3.81 cm diameter 
nozzle with a contraction ratio of 11 : 1.  The maximum operating Reynolds number 
was 40000, which corresponds to an exit velocity of 1-4 m/s and a flow rate of 1-6 11s. 
The jet was collected in an exhaust diffuser. The distance from the nozzle to the 
diffuser was approximately 20 diameters. Forcing of the jet was accomplished by 
periodically constricting the supply tube at a controlled frequency. 

Flow visualization was made possible by injecting dye into the jet shear layer or 
by generating pulses of hydrogen bubbles at a wire stretched across the exit diameter. 
The dye used was red food colouring, which can be cleared by laundry bleach. The dye 
was injected into the nozzle boundary layer through a series of overlapping slots. The 
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flow rate of the dye was controlled such that the dye was concentrated into regions of 
high vorticity. 

The hydrogen bubbles were generated from a 0.05 mm diameter platinum wire 
that was pulsed in excess of 40 V. The wire was chosen to  be thin enough to  give the 
desired quantity of bubbles, yet strong enough to  withstand the jet mass flow. The 
pulse width generally selected was 10 yo of the pulse period. To illuminate the bubbles 
i t  was necessary to  backlight the jet using a vertical slit of light issuing towards the 
observer a t  an angle of 120". The level of illumination was generally the minimum 
necessary for photography. To obtain proper exposures using strobed illumination, it 
was necessary to  use 10-15 s exposures and to  push the film to an ASA of about 3000. 

3. Shape and spacing of coherent mixing-layer structures 
The use of a passive contaminant such as dye is useful for visualizing concentrations 

of vorticity in low Reynolds number jets. At high Reynolds numbers, the increased 
mixing disperses the contaminant, making this a difficult and unreliable technique. 
An alternative technique, introduced by Mollo-Christensen ( 1  967), is to  measure near- 
field static-pressure fluctuations. Static-pressure fluctuations in the hydrodynamic 
near field of an incompressible shear layer are induced by velocity fluctuations inside 
the layer. The consequent spatial averaging makes the near field particularly sensitive 
to coherent motion buried within the turbulence. The phase relationship between the 
induced pressure and velocity fields of the coherent structures has been mapped out 
for a jet mixing layer by Lau, Fisher & Fuchs (1972). 

The static-pressure measurements were made outside the air jet using condenser 
microphones located at the 'edge' of the flow, where the intermittency was small. 
The jet was operated a t  a Reynolds number of 50000. When microphones are used 
to  measure static-pressure fluctuations there is always the question of velocity 
contamination. Work by Siddon (1969) and by Fuchs (1972) indicates that  velocity 
contamination can be effectively eliminated by proper design of a microphone fairing. 
I n  the present investigation the microphones were operated without aerodynamic 
fairings so there was probably some contamination, particularly from induced radial 
velocity fluctuations. Some contamination was considered acceptable for the pur- 
poses of this investigation so long as the microphones responded in a consistent way 
to  the passage of discrete structures. 

3.1. Near-jeld convection measurements 

I n  order to  establish whether the microphones were responding to  the mixing-layer 
structures, space-time correlations were measured between microphones. Measured 
estimates of the convection speed and spacing of the structures were compared with 
independent investigations. 

The mean convection speed of the structures was estimated by cross-correlating 
the signals from two microphones separated axially. The normalized cross-correlations 
are shown in figure 2 for various downstream positions along a cone of half-angle 10". 
The axial location refers t o  the upstream microphone, the separation between the 
microphones was 5.0 mm, and the time delay corresponding to  the cross-correlation 
peak was assumed to  be the average time for the structures to  travel between 
microphones. The mean convection speeds, defined as separation distance divided by 
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FIGURE 2.  Cross-correlation coefficients between two near-field microphones. Separation 
&JD = 0-20, convection time = T. The location x / D  refers to the upstream microphone. 

convection time, appear in figure 3 as a function of downstream position. The broaden- 
ing of the cross-correlation peaks with downstream location evident in figure 2 
was responsible for the increasing uncertainty in the estimates of the convection 
speed beyond three or four diameters. The convection speeds were normalized by 
the jet exit speed, and the ratios are in good agreement with previous investigations. 
Downstream of the potential core the convection speed decayed asymptotically as 
1/x, and was about half the local centre-line speed. 

Normalized autocorrelations measured at the same downstream positions are 
shown in figure 4. Along the potential core ( x / D  < 4) the autocorrelations were 
periodic and the time scale indicated in the figure reflects the mean periodicity of the 
discrete structures. Beyond the potential core the autocorrelations became aperiodic. 
In  the range 4 < x / D  < 7 there was no spectral peak at all. Beyond 7 diameters, 
although the autocorrelations remained aperiodic they did exhibit a correlation 
minimum. For consistency, the minimum was used to define a time scale. However 
these time scales should not be interpreted as periods. The estimated spacing between 
structures, based on the measured periodicity and convection speed, increases roughly 
linearly with downstream distance in keeping with the spreading of the mixing layer. 
These measurements of mean spacing have been previously reported by Laufer, 
Kaplan & Chu (1974, figure 3) and agree with the results of independent investigators. 
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F: [GURE 6. Experimental arrangement for mixing-layer eduction eonditioned 
on near-field microphone signature. 

3.2. Phase relation between coherent structures and near-$eld microphone signal 

That the convection speed and spacing of the structures as measured by the micro- 
phones exhibit the correct scaling with downstream distance indicates that the 
microphones responded to the passage of the coherent structures. The phase relation- 
ship between the structures and the microphone signal was then determined by condi- 
tional sampling of the turbulent velocity recorded from an X-wire probe located 
inside the mixing layer. The sampling condition was generated from two microphones 
located in the near field of the jet. The experimental arrangement is indicated in 
figure 5. The X-wire probe was located inside the mixing layer a t  the position r / D  = 0.6, 
x / D  = 2, while the microphones were located a t  the outer edge of the jet on a cone of 
half-angle 10". One of the microphones was located at the azimuthal angle of the 
probe, while the other was diametrically opposite. The X-wires were oriented to 
decompose the turbulence into radial and axial components. The turbulence was 
sampled whenever both microphone signals passed through zero simultaneously and 
with slopes of the same sign. This sampling condition provided a precise time reference 
and selected structures that were axisymmetric. The results of the conditional 
sampling are shown in figure 6. The upper two traces are the fluctuating axial and 
radial velocity components, while the middle trace, the unsteady momentum flux, 
is the product of the two components normalized by their respective r.m.s. values. 
The lower two traces are the pressure signals of the microphones located adjacent to 
the probe (# = 0) and diametrically opposite (# = n). The vertical scale is in half 
r.m.s. intervals. The velocity record was sampled whenever the two microphone 
signals simultaneously passed through zero with positive slope. The time axis 
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FIGURE 6. Educed turbulent velocities conditioned on simultaneous near-field 
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FIGURE 7. Inferred phase relationship between vortex cores and near-field 
microphone signal. 

4 

represents positive and negative delayed time with respect to the sampling conditions. 
The signatures shown on the figure are the resulting conditional average over an 
ensemble of 100 individual samples. From the figure it is apparent that  the sampling 
conditions were not effective in educing information about the axial velocity or 
momentum flux. However, the sampling conditions did educe a significant radial 
velocity signature. A positive radial velocity peak preceded a positive peak in the 
microphone signals by a quarter-wave. When this phase relationship is visualized 
in the spatial domain (figure 7 )  it follows from the sign of the mean vorticity that the 
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FIGURE 8. Definitions of zero crossing intervals TI and T, superimposed on 
sample records of two diametrically opposite microphones. 

ring vortex was in phase with positive peaks in the microphone signal. Since the 
capacitor microphones used in the experiment inverted the signal, the positive peak 
probably corresponds to a negative static-pressure fluctuation, which would agree 
with Lau et aZ. (1 972). 

The inability of the sampling conditions to educe significant axial velocity signa- 
tures is probably due to radial variations between successive vortices. Since the X- 
wire probe was located near the centre of the mixing layer, the centre of vorticity 
would be equally likely to pass above the probe as below. It should be emphasized 
that axisymmetry was built into the sampling condition. The condition was rarely 
satisfied and the resulting ensemble average represents only about 10 yo of the data 
record. When the conditional sampling was repeated, but this time conditioned on 
zero crossings in the signal of a single microphone, the condition was insufficient to 
educe a significant signature in even the radial velocity. So it appears that there are 
significant departures from axisymmetry for a significant fraction of the time. 

3.3. Zero-crossing statistics 

A t  this point it is appropriate to separate the question of axisymmetry from the 
question of topology. For example, the near field of randomly oriented vortex rings 
can be decomposed statistically into higher-order azimuthal modes. However t,hey 
would still be ring-shaped and would, for example, generate subharmonics differently 
than would helically shaped-vortices. 

Whether the structures are typically ring shaped or helical was investigated statis- 
tically from their near-field signatures by noting zero crossings in the records of a 
microphone pair located on opposite sides of the jet and by generating appropriate 
probability densities. The concept is indicated in figure 8. Microphones were placed 
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FIGURE 9. Probability distributions of time TI, 
the interval between adjacent zero crossings. 

in the near field on either side of the jet, each signal was digitized and the digital 
record was marked whenever it crossed zero with positive slope. The time Tl was the 
interval between successive zero crossings in the same microphone signal and the 
time T2 the interval between successive zero crossings in the signals from opposite 
microphones. From these intervals, probability densities p(Tl)  and p(T2) were 
generated. 

Unlike space-time correlations, the zero-crossing statistics characterize the record 
as a series of discrete events rather than as a superposition of harmonic waves. If the 
signal was periodic, the single-channel probability density, for example, would consist 
of a single delta function located at the period of the wave. Similarly if the structures 
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were ring shaped the cross-channel probability densities would be expected to exhibit 
side peaks at time intervals of plus and minus one period. Any randomness in the 
spacing or orientation of the rings would result in broadening of the side peaks. Should 
the structures be helical for a significant fraction of the time, the cross-channel prob- 
ability densities would be expected to exhibit a second set of side peaks at time 
intervals of plus and minus a half-period. 

The single-channel statistics p(Tl)  are summarized in figure 9 and the cross- 
channel statistics p(T,) appear in figure 10. Each figure shows a family of prob- 
ability densities corresponding to different axial positions between x / D  = 0.25 and 6. 
In  each figure the abscissa is the interval in ms between zero crossings. The ability 
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of these techniques to  separate time scales is illustrated in figure 9 for x / D  = 3. 
The narrow peak on the left side of the probability density was caused by high fre- 
quency amplifier noise. It has been separated from the time scales associated with 
the turbulence. Within the first four diameters, the single-channel statistics generally 
exhibited a single probability peak, whereas the cross-channel statistics exhibited 
a central maximum a t  = 0 and also secondary maxima equally spaced at positive 
and negative time intervals. I n  each case the time interval associated with the 
secondary maxima was the most probable interval based on the single-channel 
statistics. So, whenever an event with the characteristic time scale was observed on 
one side of the jet, it appeared on the other side either simultaneously or delayed by 
plus or minus one period. By implication, the mixing-layer structures were ring shaped 
at  least within the potential-core region and exhibited some degree of randomness in 
spacing and/or orientation. 

Beyond the potential-core region of the jet ( x / D  = 5 and 6),  the secondary peaks 
in the cross probability densities broadened and the central peak diminished, suggest- 
ing large departures from axisymmetry and periodicity. This is in qualitative agree- 
ment with the near-field autocorrelations (figure 4) .  The raggedness in the zero- 
crossing statistics at these locations was due t o  the small data base. 

The occurrence of a vortex pairing is evident in the single-channel statistics (figure 
9). At the location x / D  = 0.25 the probability peak occurred in the range 200-250 ,us 
( 5 0 p s  was the sampling resolution), corresponding to  the eigenmode (St = 3.7). 
However, there was a secondary peak in the range 450-500 ,us, double the eigenmode 
period. By x / D  = 0.5, the probability peak shifted to the subharmonic, with a secon- 
dary peak at  the eigenmode period. Such a discrete shift in time scale to a subharmonic 
is characteristic of a pairing. The cross probability densities were skewed a t  these 
early axial locations owing to slight misalignment of the microphones. Further down- 
stream ( x / D  > 2), the probability peak exhibited a continuous shift towards longer 
time scales. We feel that  there were still pairings a t  these locations, but that  their 
occurrence was random over an increasingly large spatial region. 

3.4. Summary of time scales 

Two physically meaningful time scales can be derived from the single-channel zero- 
crossing statistics: the most probable spacing between zero crossings and the ex- 
pected or mean spacing. The two time scales are normalized as Strouhal numbers 
D/TC< and plotted against downstream distance in figure i 1.  As would be expected, 
the most probable Strouhal number was consistently larger than the Strouhal number 
based on the mean spacing. Strouhal numbers based on the autocorrelation time scale 
(figure 4) and on the power spectral peak are also plotted for comparison. Although 
they were obtained from the same data base the spread was as much as an octave with 
the autocorrelation Strouhal numbers intermediate between the mean and most 
probable Strouhal numbers and with the spectral-peak Strouhal numbers the smallest 
of the group. 

Measurements by other investigators shown in the figure indicate that, even though 
there is a spread of as much as an octave between different types of time scale, a 
consistent definition will produce consistent scaling, independent of the Reynolds 
number or Mach number. For example, the time scales reported by KO & Davies 
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FIamE 11. Summary of turbulent jet time scales, based on a variety of measurement techniques. 
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0,  Browand etal .  (1975); ., Michalke & Fuchs (1975); V, Crow &Champagne (1971); 1, KO 
& Davies (1971). 

(1971) were derived from spectral peaks obtained for a comparatively high Reynolds 
number jet and scale with the spectral peak Strouhal numbers reported here. Similarly 
a correlation time scale (Lau et al. 1972) scales with the corresponding time scale 
reported here. The exceptions are the time scales reported by Browand et al. (1975)) 
which were derived from dye-visualization motion pictures of a low Reynolds number 
water jet. Their Strouhal numbers are generally larger than any of the present measure- 
ments. It is not clear whether this is due to their rather small data base or whether 
some vortex structures are being missed with present methods. 

3.5.  Azimuthal array of microphones 

In  order to ensure that the various statistical measurements were being interpreted 
reasonably, an azimuthal array of nine microphones was constructed to visualize the 
structures. The microphones were equally spaced on a semicircular arc that formed 
the base of a 10" half-angle cone with apex inside the nozzle exit. Data were recorded at 
downstream distances of 2, 4 and 6 diameters. The signals were converted to digital 
records (effective sampling rate = 20 kHz), high-pass filtered above 50 Hz and 
normalized by their individual r.m.s. levels. 

A brief sample of the data collected at  x / D  = 6 appears in figure 12. The nine traces 
represent simultaneous records from the nine microphones, which were equally spaced 
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FIGURE 12. Near-field azimuthal pressure records. Nine microphones equally spaced azimuthally 
on a 10" half-angle cone and positioned six diameters downstream. 

azimuthally 22.5" apart. Although there was considerable continuity from one 
microphone to  the next, it is hard to judge the degree of axisymmetry from this type 
of display. To improve the visualization the oblique projections shown in figure 13 
were adopted. Each microphone record was projected a t  an angle corresponding to its 
azimuth about the jet. The radius vector r+(t) corresponding to each trace is a function 
of time and consists of an unsteady part, proportional to the microphone signal, 
superimposed on the jet radius. That is, 

r,(t) = Ri-1 +o-lP$(t)/P;I, 
where R is the jet radius and p+( t )  is the signal from the microphone with azimuth q5 
from the vertical. The factor 0.1 provided the best visualization and has no physical 
significance. The radius vector was projected according to the transform 

where V,, the convection speed of the structures, was selected as 0.6tL. The dimensions 
X ,  and Y+ were normalized by the jet diameter D, so that the 'time ' axis is expressed 
in convected diameters. This type of display preserves the correct spatial proportions 
of the jet, making the azimuthal shape of the structure easier to visualize. However 
the display is only a visualization technique and does not, for example, describe the 
motion of the jet interface. 

The sequence of visualizations at the downstream locations x / D  = 2, 4 and 6 com- 
plements the conditional zero-crossing statistics. At x / D  = 2, the structures were 
circumferentially coherent rings. Although the rings were clearly axisymmetric in a 
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FIGURE 14. Azimuthal variation of correlation coefficient. 



InJEuence of wave dispersion m vortex pairing 485 

KE 0.6 

0 1 2 3 4  

Mode, rn 

FIGURE 16. Decomposition of azimuthal correlations into modes: 
R($)  = XCR,cos (m$). 0, x / D  = 2; 0, x / D  = 4; 0, x / D  = 6. 

statistical sense, the visualization exhibits some variation in orientation. By x / D  = 4 
the rings occasionally tilted so much that the jet appeared to  be locally sinuous, and 
by x / D  = 6 the tilting was so extreme that the jet appeared to be sinuous for a good 
part of the time. Note that a t  six diameters the jet was nearly as coherent circum- 
ferentially as at two diameters, although the large degree of random azimuthal dis- 
tortion would result in misleadingly small cross-correlation coefficients. 

TO underline the last point, the variation of the cross-correlation coefficient R(#) 
with azimuth # is plotted in figure 14 for the three axial locations. The azimuthal 
correlations were decomposed into circumferential modes according to the Fourier 

series m 

R(#) = c Rnlcos (m+). (3.1) 
m=O 

The resulting distribution of the first four modes is shown in figure 15. Notice that by 
x / D  = 6 the cross-correlations suggest that there was as much energy in the m = 1 
(helical) mode as in the m = 0 (axisymmetric) mode. However, on the basis of the 
near-field visualizations this can be accounted for by random straining of vortex 
structures that were basically ring shaped. 

4. Influence of wave dispersion on vortex coalescence 
From the previous section it appears that, although the turbulent structures suffer 

random straining that increases in magnitude with downstream distance, they re- 
main ring shaped at  least until the end of the potential-core region. We characterize 
the rings as annular concentrations of vorticity whose motion is self-induced. 
Coalescences between adjacent rings are mutually induced by virtue of their compact 
vorticity, and can be idealized in terms of axisymmetric pairings between potential 
vortex rings. 

The essential feature of the proposed model for the vortex coalescences is a resonant 
interaction between the vortex structures and a small amplitude subharmonic wave. 
In order to investigate the model it is necessary to know both the local convection 
speed of the nonlinear vortex structure and the local phase speed of the linear sub- 
harmonic disturbance. The convection speed of the vortex was measured directly 
from its near-field pressure signature or from flow visualization. The local phase speed 
of the subharmonic wave was estimated from parallel stability theory. We recognize 
that a theory that assumes a weakly perturbed laminar flow field may be a poor 
approximation to  a fully developed turbulent mixing layer. However Crighton & 
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Gaster (1976) have demonstrated that  the local dispersion relations obtained from 
parallel stability theory, as well as the dispersion relation they obtained from their 
own non-parallel analysis, agree closely with the dispersion measurements made by 
Crow & Champagne (1971) in a fully turbulent jet that  had been forced. These results 
have been corroborated recently by Moore (1 977)) who measured wave dispersion in 
a jet forced a t  much lower levels than that  of Crow & Champagne. By implication, 
stability eigenvalues are not particularly sensitive to details of the velocity profile, 
and provide a reasonably good engineering approximation even for a turbulent mixing 
layer. 

4.1. Xpatial stability theory 
The results of two stability analyses are considered. The theories of Michalke (1971) 
and Mattingly & Chang (1974) both model the jet mixing layer as a laminar annulus 
with a prescribed velocity distribution. The annulus is disturbed by travelling wave 
trains of the form 

The variables ux, ZL, and u4 are respectively the axial, radial and azimuthal components 
of the velocity perturbations and p is the pressure perturbation. The parameters a, 
m and w are respectively the wavenumber, azimuthal mode number and frequency 
of the travelling wave. As the stability analyses are spatial theories, the wavenumber a 
is complex. 

Since the eigenvalues are not sensitive to details of the velocity profile, the parti- 
cular profile can be characterized by a single parameter, namely its thickness. The 
eigenvalue solutions can then be applied locally to an arbitrary shear layer by matching 
the thickness parameter. Michalke's (1971) analysis was based on a hyperbolic- 
tangent profile, and he chose the momentum thickness 0 as the parameter. The analysis 
of Mattingly & Chang (1974) was based on a half-Gaussian profile, and they chose the 
parameter ro.5, which was defined to he the local jet half-width (1 > U ( r ) / V ,  > 0.5) .  
The use of a half-Gaussian profile for the velocity introduced some artificiality into 
their analysis in that their mean flow coupling term 

g [ 1 dli (r)]  
dr r dr 

made its largest contribution at the edge of the shear layer rather than in the centre. 
Again, since the eigenvalues are insensitive to the velocity profile, this is probably 
not too serious a limitation. 

The mixing layers of turbulent jets grow linearly. The measured thickness para- 
meters for the present air jet were 

= 0-105x, 6 = 0.034~. (4.2) 

The stability eigenvalues were applied to  the air jet by selecting the eigenvalue 
relations that corresponded to the local mixing-layer thickness O(x) or rO5(x). The 
dispersion curves that appeared as figure 7 in Michalke (1971) are replotted here as 
figure 16, with the Strouhal time scale based on the exit velocity and diameter. The 
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Mean passage frequency, D/TUe 
FIGURE 16. Near-field pressure measurenionts conipared u+th dispersion relations from linear 

stability theory. --, dispersion relationship (Michelke 1971) ; 0, pressure measurements. 

values of the associated momentum thickness BID are indicated alongside the axial 
locations. Note that the shear layer is dispersive to  long waves and relatively non- 
dispersive to  short waves. The latter have phase speeds of about half the jet velocity. 
Moreover, as the shear layer thickens with downstream distance, it becomes non- 
dispersive to increasingly longer waves. The wavelength of the longest non-dispersive 
wave within each dispersion curve is rather subjective. I n  order to  introduce some 
objectivity into the choice of a dividing frequency, we adopted that of the most 
amplified waves (indicated in the figure by vertical dashed lines) since they occurred 
near the lowest non-dispersive frequency. 

The open symbols in figure 16 denote mean passage frequencies and convection 
speeds of the large-scale structures measured from their near-field pressure signatures. 
The passage frequencies were derived from the zero-counting statistics (figure 9) and 
the convection speeds from the two-point cross-correlations (figure 3). At each down- 
stream location, the near-field measurements fall near the local dispersion curve and 
within the non-dispersive range. Moreover the mean near-field passage frequency was 
roughly an octave above the dividing frequency. Consequently a subharmonic dis- 
turbance would have a phase speed nearly equal to  the convection speed of the vortex 
structure. 

Loci of dividing frequencies, as defined in figure 16, are plotted in figure 17 as a 
function of downstream distance. The solid curve was based on the Michalke theory 
while the broken curve was based on Mattingly & Chang. Together the loci define a 
dispersive boundary. Waves in the region below the curves are locally dispersive. The 
near-field passage frequencies were replotted alongside the dispersion boundary. The 
measurements generally exhibited the same linear trend with x / D  as did the curves. 
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FIGURE 17. Near-field time scales cornpared with evolut,ion of dispersion boundary. --, linear 
eigenmode (Michalke 1971); ---, linear eigenmode (Mattingly & Chang 1974); 0, most prob- 
able near-field passage frequency ; n, mean near-field passage frequenoy. 

Most important, the passage frequencies, especially the most probable passage fre- 
quencies, fell about an octave above the curves. 

Although the octave separation between the vortex passage frequencies and the 
dispersive boundary is consistent with the subharmonic resonance criterion, it does 
not necessarily imply a causal relationship. It may imply only that both quantities 
vary linearly with x / D .  A much stronger case can be made by examining the first 
pairing. As is evident from figure 9, the near-field passage frequency remained con- 
stant with x / D  until the first vortex pairing had been completed, somewhere between 
0-25 and 0-5 diameters downstream. The shear Iayer became thicker with downstream 
distance owing t o  entrainment and vortex roll-up. From figure 17 it is apparent that  
the first pairing did not occur until the mixing layer was sufficiently thick that it 
could support a non-dispersive subharmonic disturbance. By inference, the phase 
locking of the subharmonic was a necessary condition for the pairing to proceed. 

The requisite phase locking between quasi-periodic large-scale structures and sub- 
harmonic disturbances provides a mechanism for decoupling from the initial conditions. 
The eigenmode of the initial, laminar instability necessarily increases as the square 
root of the Reynolds number. However, the dispersive nature of the mixing layer 
associates each initial vortex spacing with a unique shear-layer thickness that must 
be attained before adjacent vortices can coalesce. Once the first coalescence has 
occurred, each successive coalescence doubles the mixing-layer thickness, making it 
non-dispersive with respect to the next smaller subharmonic frequency. 
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4.2. Jet forcing with $ow visualization 
A disturbing aspect of the previous section is that  the resonance model is deterministic, 
while the air-jet measurements supporting the model were entirely statistical. The 
reason for this is, of course, the statistical variation of local conditions, which is 
induced in large part by spatial variance in the location of vortex coalescences. 

Local variations can be reduced by forcing the jet. Superimposing a small periodic 
surging on the flow field has the effect of spatially localizing coalescences between 
vortices whose passage frequency matches the surging. When the jet structure is 
regularized in this way, local conditions become periodic, permitting ensemble- 
averaged measurements to describe instantaneous conditions accurately. 

The forced-jet measurements were made with the water-jet facility operating a t  
Reynolds numbers of 5000, 10000, 20000 and 40000. At each Reynolds number, the 
jet was forced at Strouhal numbers of 0.5, 1.0, 1-5 and 2.0. Dye visualization was used 
to measure the spacing between the vortex rings and to determine the location of the 
pairings. The photographs in figure 18 (plate 1 )  show the jet forced near St = 1 a t  
two different Reynolds numbers. The jet was illuminated by a strobe flashing in 
synchronization with the forcing. Each photograph was a multiple-exposure photo- 
graph taken over a number of flashes. The technique selected periodic motion that 
was phase locked with the forcing. The effectiveness of forcing in localizing the occur- 
rence of a vortex pairing is best illustrated at low Reynolds number (figure 18n). The 
photograph, which was an ensemble of 10 strobe exposures, repeatedly captured two 
vortex rings undergoing a pairing a t  a fixed point in space. Once the pairing was 
complete, the spacing between rings had doubled and, by conservation of waves, the 
passage frequency had been halved. This frequency halving can be immediately re- 
cognized from the reduced exposure. The rings spaced periodically downstream of 
the pairing in figure 18 ( a )  are lighter because they were present in only every other 
strobe exposure. Further downstream in the same photograph a second pairing not 
phase locked by the forcing destroyed the phase reference. The multiple-exposure 
visualizations were substantially the same a t  higher Reynolds number (figure 18b), 
although the details of the flow were not as well ordered. In  any case, the completion 
of the first pairing was located in the photograph to within a fraction ofa  wavelength 
by noting the onset of reduced exposure and loss of phase reference. 

Vortex convection speeds were also deduced from the photographs. The vortex 
spacings h / D  were measured directly, the passage frequencies were fixed by the 

(4.3) 
forcing, and 

The results are plotted in figure 19 for the range of Reynolds numbers. The vortex 
rings travelled a t  roughly 60 yo of the jet velocity, independent of the forcing frequency 
or Reynolds number. 

The range of forcing frequencies, X t  = 0.5-2, was deliberately chosen to include 
Strouhal numbers smaller than the lowest non-dispersive frequency supported by the 
initial shear layer. In  practice, though, it was not possible to excite vortex rings that 
moved faster than 0.6/T,. When the forcing frequency was slightly below the non- 
dispersive limit, small amplitude waves were excited that travelled faster than 0.6Ue. 
By the point where the roll-up was complete, however, the shear layer was thick 
enough that the forced disturbance was locally non-dispersive. When the initial 

C</q = St(h/D).  
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shear layer was driven an octave or more below its lowest non-dispersive frequency, 
the resulting instability was driven by harmonics of the forcing rather than by the 
forcing frequency itself. This sort of harmonic coupling is shown in figure 20 (plate 2). 
This is a multiple-exposure photograph, illuminated by a strobe synchronized to  the 
forcing. The jet was operated at a Reynolds number of 5000 and driven a t  a Strouhal 
number of 0.48, which was about an octave below the lowest non-dispersive frequency 
based on the initial shear-layer thickness. Two sets of vortex spacings are apparent 
in the figure, both phase locked to the forcing. The first set was created by the linear 
instability and had a passage frequency of St = 1.0, the first harmonic of the forcing. 
At a fixed position downstream, the first set of rings paired with each other, resulting 
in the second set of rings, which has twice the spacing and half the frequency (i.e. 
St = 0.5, the forcing frequency). Moreover, the second set of rings, whose passage 
frequency matched the forcing, was particularly stable with respect to subsequent 
pairings. The next pairing was delayed until a point beyond four or five diameters 
downstream. In  the space between pairings, as is evident from the plate, the growth 
of the mixing layer was inhibited. This behaviour is expressed quantitatively in figure 
21, which was measured by Browand (1976, private communication) in the same 
water jet. The flow was visualized with dye, and through frame-by-frame analysis 
of a high-speed motion picture, vortex passage times were noted a t  eight axial posi- 
tions and median passage frequencies calculated. The figure displays the median 
passage frequencies vs. axial location for a family of forcing frequencies, as well as 
for an unforced case. When the jet was forced at frequencies near or above the natural 
instability (St = 1.2), the instability was driven by the forcing and the passage fre- 
quency decreased smoothly with downstream distance, reaching a Strouhal number 
of 0.5 at around four diameters. When the jet was forced at the first and second sub- 
harmonics of the natural instability, the instability was not driven at the forcing 
frequency. Instead it was driven a t  high, non-dispersive harmonics of the forcing 
frequency and the passage frequencies decreased with downstream distance in dis- 
crete jumps, corresponding to phase-locked pairings, until the forcing frequency was 
attained. Once that frequency was attained the vortices were quite stable, with no 
further pairings until beyond four diameters. 

The mean locations of the pairings were deduced from figure 21 by applying con- 
servation of waves. Where a pairing has been completed half the vortices will have dis- 
appeared, halving the passage frequency. The deduced locations of completed pairings 
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FIGURE 21. Axial variation of mean vortex passage frequencies in forced water jet (Browand 
1976, private communication). Reynolds number = 5000. Strouhal number of forcing: A, 1.6; 
W ,  1.0; 0 ,  0.6;  V, 0.3; 0, no forcing. 

are plotted in figure 22 as a function of the subharmonic, paired frequencies resulting. 
The pairing locations estimated from the multiple-exposure photographs are plotted 
for comparison, as are pairing locations estimated from the free air jet by applying 
conservation of waves to  the measured mean passage frequencies (figure 1 1 ) .  There is 
general agreement between pairing locations estimated by the two different methods 
and for the two different jets. Moreover, there is no obvious viscous influence over the 
range of Reynolds numbers considered. The pairing location generally varies inversely 
with the resultant subharmonic. 

I n  an investigation of local influences on vortex interaction using different jets 
operated a t  different Reynolds numbers and with different initial conditions, the local 
mixing-layer thickness, rather than axial position, is a more relevant scaling para- 
meter. As was evident in figure 20, forcing can significantly alter the mixing-layer 
growth. So, in order to  measure correctly the mixing-layer thickness a t  the location 
of a pairing, i t  is important that  the jet is being forced during the measurement. 
Again a photographic technique was devised, based on multiple exposures. The jet 
was operated a t  the same Reynolds numbers and forced a t  the same Strouhal numbers 
as in the dye photographs. The mixing-layer growth was visualized using pulsed 
hydrogen bubbles illuminated by a stroboscope. This time, however, the strobe was 
synchronized to the bubble-wire pulsing, rather than to  the jet forcing. The bubble 
pulses maintained their phase relative to  the wire as they propagated through 
parallel flow regions, but the phase reference was destroyed in regions where there 
was mixing. I n  this way, the boundaries of the mixing layer were marked visually. 
Figure 23 (plate 2) is a typical visualization. The initial conditions were the same as 
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FIGURE 22. Axial location of successive coalescences plotted against resulting ' subharmonic '. 
Reynolds number: 0, 5000; 0, 10000; 0, 20000; A, 40000; 1, 52000 (air jet); 0 ,  5000 
(Browand 1976, private communication). 
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FIGURE 24. Local momentum thickness after vortex coalescence plotted against resulting 
'subharmonic'. -- , dispersion boundary ; ---, parallel line one octave above dispersion 
boundary. Reynolds number: 0, 5000; 0, 10000; 0. 20000; V ,  52000 (air jet,). 

for figure 20, namely Re = 5000 and St = 0.48. The growth of the mixing layer is 
clearly visible and its thickness can be measured directly from the photograph a t  any 
axial position within the first few diameters. 

Information from the two sets of flow visualizations is cross-plotted in figure 24. 
For each forcing frequency, the axial position where the first pairing was complete 
was determined from the dye photographs and plotted against the paired, subharmonic 
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frequency in figure 22. With the pairing location known, the corresponding mixing- 
layer thickness was measured from the hydrogen-bubble photographs. The momentum 
thickness was assumed to be 20 yo of the velocity-profile thickness. In  figure 24 the 
subharmonic frequency is cross-plotted against the momentum thickness O/D 
measured a t  the completion of the pairing. The pairing locations in the free air jet 
deduced from conservation of waves are also cross-plotted for comparison. The dis- 
persion boundary is plotted alongside the measurements. A dashed line is plotted an 
octave above the dispersion boundary and although there is considerable scatter this 
dashed line passes through the data. Consequently, a wave disturbance with a wave- 
length twice the spacing of the paired vortices would have a phase speed that 
matched the convection speed of the vortices. 

5. Conclusions 
(i) For an incompressible air jet operated at moderate Reynolds number, the 

dominant turbulent structure was a ring of concentrated vorticity. These structures 
were statistically axisymmetric and were spaced quasi-periodically. Individual reali- 
zations of the mixing layer, derived from an azimuthal microphone array, suggested 
that the rings experienced distortions in orientation, which increased in magnitude 
with downstream distance. At some point beyond the end of the potential core, the 
semblance of axisymmetry had disappeared and the jet appeared sinuous much of the 
time. 

(ii) Detailed examination of the ‘visualizations ’ derived from the azimuthal micro- 
phone array suggested that over the range 2-6 diameters downstream there was 
relatively good coherence around the jet. However, random straining created the 
appearance of poor azimuthal coherence when averages over time were taken. 

(iii) Estimates of the passage frequency of the large-scale structures past a point 
in space were derived from their signatures in the hydrodynamic near field of the jet. 
Depending upon how the time scale was defined, however, estimates derived from the 
same data base varied over as much as an octave (figure 11) .  Generally speaking, the 
most probable passage period, as derived from zero-crossing statistics, produced 
the largest estimated passage frequency. This was followed in order by the estimate 
based on the autocorrelation period, the estimate based on the mean passage period 
(derived from zero-crossing statistics), and finally, the frequency of the power spectral 
peak. 

(iv) Air- and water-jet measurements were combined to examine the relationship 
between vortex pairings and the local mixing layer. Evidence was presented (figure 
24) to show that over a reasonably wide range of Reynolds numbers the local thickness 
of the mixing layer at  the completion of a pairing scaled with the passage frequency of 
the paired vortices. 

(v) A model was suggested that could account for the scaling of vortex pairing 
with mixing-layer thickness. A vortex pairing was idealized as a resonant interaction 
between a set of vortex rings and a linear subharmonic disturbance. The interaction 
depends on the linear dispersion of the local mixing layer. Parallel stability theory was 
used to estimate the local dispersion relation as a function of downstream distance. 
Measurements were presented which suggested that the first pairing occurred where 
the mixing layer became sufficiently thick, owing to nonlinearities and entrainment, 
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that a subharmonic wave had a phase velocity that matched the convection speed of 
the vortex rings. 
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FIGURE 18. Dye visualization of water jet being forced at  Strouhal number of 1.0. 
(a )  Reynolds number = 5000; (b )  Reynolds number = 20000. 

Plate 1 
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FIGURE 30. Dye visualization of water je t  being forced a t  St = 0.48; Reynolds number = 5000. 

FIGURE 23. Hydrogen-bubble visualization of water jet being forced a t  St = 0.48; 
Reynolds number = 5000. 
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